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I. METHODOLOGY & NOVELTY (40 POINTS)

A. Problem description & motivation (5 points)

This project focuses on using generative Graph Neural
Networks (GNNs) to predict high-resolution (HR) brain con-
nectivity graphs from their low-resolution (LR) counterparts.
This task is motivated by the need to enhance the resolution
of brain connectivity data, which is crucial for advancing
our understanding of brain function. The problem involves
learning a mapping function f that can accurately transform a
low-resolution brain matrix ALR into a high-resolution brain
matrix AHR. This task is essential because high-resolution
brain graphs provide more detailed and precise information
about neural connections, which can significantly improve
the analysis and diagnosis of neurological conditions. By
developing a model that can infer high-resolution connectivity
from low-resolution data, we aim to overcome the limitations
of current imaging techniques and pave the way for more
accurate and insightful brain research.

B. State-of-the art methods (3 points)

See Table I

TABLE I
OVERVIEW OF GNN-BASED SOTA MODELS

Model Name Brief Description
GraphUNet [1] Inspired by usual U-Net networks, GCN with an

encoder-decoder structure and pooling, enabling hi-
erarchical feature extraction and improved node clas-
sification.

GSR-Net [2] Built on top of the GraphUNet architecture. De-
signed to work on fully connected brain graphs
(connectomes). Adds a Graph Super Resolution
(GSR) Layer inspired by imaging methods to upscale
graphs.

AGSR-Net [3] Built on top of the GSR-Net architecture. This adds
a adversarial regularization to ensure the upscaled
graphs match a prior ground-truth HR distribution.

GraphTransformer
[4]

Incorporates self-attention and positional encoding
into GNNs, enabling global message passing for im-
proved representation learning in graph-based tasks.

GIN [5] Maximizes the expressive power of GNNs by using
injective multi-layer perceptrons (MLPs) as aggrega-
tion functions

C. Main figure (4 points)

See Figure 1

D. Brief overview of the proposed GNN (5 points)

Node features initialization We initialize the node feature
matrix of size n × d with a mix of various topological
features (betweeneness centrality, closeness, clustering), and
adjacency Laplacian eigenvectors (first d − 3 components).
UNet Architecture Our model is built over the Graph-UNet
[1] architecture, with an up-sampling layer on top. We replaced
the standard graph convolution layers by graph attention layers
[4], [6], because they provide adaptive feature weighting
which improves representation learning for heterogeneous
connectivity patterns in those graphs. It starts by learning
node embeddings through successive down-convolutions and
pooling. In each pooling layer, the number of nodes is scaled
down by a hyperparameter factor 0 < k < 1, while the
node feature space dimension increases by an amount 1

k .
This allows for a transfer of representation between the
adjacency matrix and the node features. After these down
convolutions, just like in regular UNet networks, the learned
embedding is then passed into a bottleneck convolution. Then,
we successively reconstruct our input through a series of
up-convolutions and unpooling, to match the dimensions of
outputs with those of the down-pooling layers. Finally, we
pass our reconstructed inputs through a ”Graph Upsampler”.
This upsampler is composed of linear layer upsampling our
nodes embeddings from 160 to 268. It then reconstructs the
associated adjacency matrix and optionally refines it through
two convolution layers. Transformer Convolution layers are
used to capture long-range dependencies in brain connectivity,
which traditional convolution-based models struggle with.
Moreover, we provide for long-range feature consistency by
reconstructing the adjacency matrix from the feature matrix
Ã = σ(XXT ) at each up-pooling level, and computing
the loss with the corresponding down-pooled ground truth
adjacency (see Figure).

E. Innovative components (10 points)

Our model introduces two key innovations compared to
existing SOTA for brain graph super-resolution.

Unlike classical Graph UNet models that only compute loss
at the final HR adjacency matrix, we introduce intermediate
losses at each down-sampling stage. It helps the model pre-
serve hierarchical graph information throughout the encoding
process. By reinforcing meaningful representations at lower
resolutions, the model achieves smoother feature transitions
and better reconstruction fidelity in the final HR output.



Fig. 1. Graph U-Net like auto-encoding architecture

Instead of only using raw node features or random initializa-
tion, we incorporate the eigenvectors of the graph Laplacian
as initial node embeddings, (along with various topological
features such as betweenness centrality, closeness, and cluster-
ing). Since the brain graph we are working with exhibits mod-
ular structures with well-defined clusters (and clusters within
clusters), Laplacian eigenvectors naturally encode these hierar-
chical and spectral properties. This initialization helps preserve
long-range dependencies, which is essential for reconstructing
HR connectivity patterns from the LR matrix. Therefore, we
use global graph structure from the start, enabling the model
to better capture connectivity patterns.

See Table II.

TABLE II
INNOVATIVE COMPONENTS OF THE PROPOSED GNN FRAMEWORK

Novel Contribution Rationale
Intermediate Losses at
Each Down-Pooling Level

Instead of only computing loss at the fi-
nal output, we introduce intermediate losses
at each down-sampling stage. This enables
the lower-resolution embeddings to preserve
meaningful hierarchical information, which
can lead to better reconstruction of the HR
adjacency matrix.

Use of Laplacian Eigen-
vectors for Node Feature
Initialization

We initialize node features using the eigen-
vectors of the Laplacian matrix. Laplacian
eigenvectors capture the global connectiv-
ity patterns of the graph, encoding spectral
properties that reflect how information prop-
agates across the network. This allows our
model to encode global graph structure from
the beginning, which improves connectivity
preservation.

F. Mathematical properties of the proposed GNN (13 points)

Permutation invariance (5 points)

a) (1 point) A function f is said to be permutation
invariant if for any permutation h, f ◦ h = f

b) (4 points) Our GNN architecture takes as input a
graph of 160 nodes and outputs a new graph of
268 nodes. Permutation invariance is not satisfied
since the GNN gives a new embedding for the
nodes.

Permutation equivariance (5 points)

a) (1 point) A function f is said to be permutation
equivariant if for any permutation h, f ◦h = h◦f

b) (4 points) We will break down the components
of our model. Firstly the convolutions, which
are permutation equivariant. The reconstruction,
for P a permutation matrix, σ((PX)(PX)T ) =

σ(PXXTPT ) = P ˜APT , is permutation equiv-
ariant. A downpooling-uppooling layer is permu-
tation equivariant as well, since the top ranked
nodes will be selected and used to unpool. Finally,
the reconstruction layer is made of a linear layer
and convolutions, so it is permutation equivariant
as well.



Expressiveness (3 points)

a) (1 point) Expressiveness refers to how well a
GNN can distinguish different graphs or different
parts of a graph based on their structure and node
features.

b) (2 points) To maximize expressiveness, we used
transformer convolutions, and a U-net like archi-
tecture to capture key features of the graph.

II. EXPERIMENTAL SETUP & EVALUATION (27 POINTS)

A. Results (9 points)

a) (2 points) See Table III. The KL divergence is es-
pecially effective for the graphs we have, which are
highly connected, with various weights. Unlike the other
topological metrics, the core-periphery structure analyses
the hierarchical structure of the graph.

b) (4 points) See Figure 2. To assess the generalization of
our model, we performed 3-fold cross-validation on the
training set of 167 samples, evaluating its performance
across 8 different metrics.
The Mean Absolute Error remains stable across folds,
indicating consistent reconstruction performance. The
Pearson Correlation Coefficient (PCC) varies slightly,
but remains high, demonstrating that the predicted high-
resolution graphs preserve key structural relationships.
The Jensen-Shannon (JS) Distance shows slightly higher
variability across folds, suggesting some sensitivity in
capturing probabilistic graph differences.
This metric quantifies the similarity between the edge
weight distributions of the predicted and ground-truth HR
graphs. There is a high divergence, which suggests that
the model fails the capture the global distribution, and
maybe focuses on certain subgraphs or nodes.
Evaluating graph topology, we measure betweenness cen-
trality, eigenvector centrality, PageRank centrality, and
core-periphery structure. The model preserves centrality
measures well, indicating that key nodes retain their
structural roles. The core-periphery structure shows some
variation, suggesting that while the model reconstructs
global connectivity patterns effectively, it may struggle
with highly modular brain regions.
Generalization & Performance Overall, our model gen-
eralizes well across folds, as indicated by the low vari-
ance in MAE, PCC, and topological metrics. The pri-
mary source of variability lies in JS Distance and core-
periphery structure, which could be due to the heterogene-
ity in brain graphs across subjects. Future improvements,
such as incorporating anatomical priors, could enhance
robustness in these aspects.

c) (2 points) The 3-fold validation took around 20 minutes
on a Tesla V100, using around 500mb of RAM.

d) (1 point) After we experimented with our model and
made sure the results were consistent with the 3-Fold
cross validation, we used the whole train_LR dataset

Fig. 2. Our model 3-Fold Validation Results

to train a model with our architecture. Then, we predicted
the high-resolution images of the test_LR dataset be-
fore vectorizing the output to submit them to Kaggle
where we achieved a score of approximately 0.1625
(ranked 24th).

TABLE III
ADDITIONAL TOPOLOGICAL/GEOMETRIC MEASURES

Measure Name Brief Description & Rationale
KL divergence of weight
distribution

Measures the difference between
the edge weight distributions of
predicted HR graphs and ground
truth HR graphs. This captures
whether the model correctly pre-
serves the statistical properties of
brain connectivity.

Core-periphery structure Evaluates how well the model
maintains the hierarchical modu-
larity of brain graphs, where core
nodes have high connectivity and
peripheral nodes have lower con-
nectivity.

B. Comparison Against Other Methods (6 points)

On Figure 3 and Figure 4, we plotted the results of the 3-fold
metrics on the validation set. Overall, the GSR performs better
than the MLP. Our model accuracy is also very close to the
GSR, however the KL-divergence of the weights distribution is
much higher for our model. Our model is also more unstable,
with some topological measures having much more variance.
The KL-divergence of our model is quite similar to the KL-
divergence of the MLP. The core-periphery structure of our
model is much higher, which suggests that our model may
miss some important information on certain nodes. We can
suppose that our model may overfit on the training data, and
may not capture the importance of some significant nodes.

C. Scalability of Your Proposed GNN Model (7 points)

Our model is designed to be scalable, using Graph UNet
with Graph Attention and Transformer layers. We use hi-
erarchical pooling/unpooling operations, which helps reduce
the computational cost while keeping important structural
information.

Additionnally, our model has a relatively low number of
parameters compared to large-scale transformer-based archi-
tectures. Indeed, it has X parameters.



Fig. 3. MLP 3-Fold Validation Results

Fig. 4. GSR 3-Fold Validation Results

Concerning computational efficiency, we benchmarked
training on an NVIDIA V100 GPU, where each epoch takes
approximately 3 seconds. This indicates that even when scal-
ing to larger brain graph datasets, our model is still compu-
tationally feasible. Additionally, we used mini-batching and
efficient sparse matrix operations to make it adaptable for
larger graphs.

Consequently, our model achieves a good balance between
expressiveness and efficiency, which makes it adapted for
larger datasets.

D. Reproducibility of Your Proposed GNN Model (5 points)

Our model ensures reproducibility by fixing random seeds
across PyTorch, NumPy, and Python’s random library, and by
enforcing deterministic operations in PyTorch. We employed
3-fold cross-validation to reduce variability across runs.

While minor fluctuations may happen with graph distribu-
tion shifts, our architectural choices help mitigate instability.
We used graph Transformers to enhance robust message
passing, while adjacency eigenvector initialization provides
a strong structural prior. Additionally, intermediate losses at
each pooling level guide training and prevent overfitting.

Our complete implementation, with dataset preprocessing
and training scripts, is publicly available for full reproducibil-
ity: https://github.com/denisfouchard/DGL-Group-Project.

III. DISCUSSION & REFLECTIONS (8 POINTS)

a) (4 points)
Our model has several strengths. First, it is a low-
parameter model, making it computationally efficient
while still achieving strong performance. The use of
Graph U-Net and Graph Transformer layers allows effec-
tive multi-scale representation learning without too much

parameter growth, which enables fast training. Another
strength is our model’s simplicity and transferability. It
only uses standard GNN operations such as pooling and
attention layers, which makes it adaptable to other graph-
based tasks.
However, our model has weaknesses. One limitation
is the lack of domain-specific adaptation. While our
model learns from the data, it does not use fMRI-
specific priors like anatomical parcellations, which could
improve performance for brain graph super-resolution.
Additionally, our pooling mechanism is brain-structure
agnostic: it uses learned scores rather than leveraging the
hierarchical organization of brain networks. This can limit
its ability to capture meaningful clusters that are essential
for understanding the brain.

TABLE IV
STRENGTHS & WEAKNESSES OF THE PROPOSED GNN

Low parameter model Our architecture uses a low number of
layers and parameters, which enables fast
training and reduces overfitting.

Simple, transferable
model

By using standard GNN components such
as Graph Transformers and pooling layers,
the model can be easily adapted to various
types of graph data beyond brain graphs.

Lacks domain-specific
adaptation (fMRI
connectivity)

The model does not incorporate neuroscien-
tific priors such as anatomical parcellations
that could improve performance specifically
on fMRI-derived brain connectivity data.

Brain-structure agnostic
(clustering)

Our pooling strategy is only based on
learned scores and does not use known
hierarchical structures of the brain, which
may limit its ability to capture meaningful
clusters.

b) (4 points)
One limitation of our current model is its lack of
domain-specific adaptation. Future work could incorpo-
rate anatomical priors from fMRI studies, such as modu-
lar parcellations or hierarchical brain regions, to guide the
model when learning. For instance, a biologically inspired
loss function could penalize unrealistic connections that
do not align with known brain structures. This would help
the model generate more interpretable high-resolution
graphs.
To improve generalization and reduce overfitting, con-
trastive learning could be introduced during training. By
encouraging the model to learn invariant representations
across different subjects while distinguishing between
distinct brain networks, we could enhance its ability
to generalize to unseen test samples. This could be
achieved through self-supervised contrastive objectives,
where positive samples are augmented versions of the
same subject’s graph, while negatives are graphs from
different individuals.
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